

Department of Mathematics Stochastic Analysis (SS 2019) Dr. Alexander Fromm

Exercise sheet 8

Problem*

(4 additional Points)

Submission: 04.06.2019

Let $(B_t)_{t\geq 0}$ be a Brownian motion. We define $\tau_1 := \inf\{t \geq 0 | B_t = 1\}$ and $X_t := \mathbb{1}_{[0,\tau_1]}(t), t \geq 0.$

- (a) Show that $X \in \mathcal{L}^2_{loc}(B)$, but $X \notin \mathcal{L}^2(B)$.
- (b) Show that $I_{\infty}(X) = \lim_{t \to \infty} I_t(X)$ is well defined as an a.s.-limit and calculate $\mathbb{E}[I^2_{\infty}(X)]$. Show that the values $\mathbb{E}[I^2_{\infty}(X)]$ and $\mathbb{E}\left[\int_0^{\infty} X_s^2 ds\right]$ are different.

Total: 4 additional Points

Terms of submission:

- Solutions can be submitted in groups of at most 2 students.
- Please submit at the beginning of the lecture or until 9:50 a.m. in room 3523, Ernst-Abbe-Platz 2.